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Introduction 
 

Agriculture plays a key role in overall economic and 

social well-being of India. Though the share of 

agriculture in both Gross Domestic Product (GDP) 

and employment has declined over time, the pace of 

decline in its share in employment has been much 

slower than that of GDP. The share of agriculture in 

GDP is declined from 39% in 1983 to 24% in 2000–

01 compared with much lower rate of decline in its 

share in total employment from 63% to 57% during 

the same period. In this era of ‘every drop counts’ 

soil moisture is a valuable parameter to be 

considered for study and research purposes.  

 

Soil moisture is considered an integral and 

fundamental part of the climate system and is among 

the key variables of hydrological cycles over the 
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The STM2 is a simple and potentially useful tool for modeling soil moisture and 

temperature conditions to plan agricultural management operation. The quality of 

STM2 soil moisture estimates varies with soil textural groups. The model worked 

best with the Sandy and Loamy soil textural groups, which had the lowest RMSE 

values and the highest d indices. Its moisture estimates were only moderately good 

for the Clayey soil, and they were unacceptable for the Gravelly soil. Addition of 

data on the percentage of coarse fragments in the soil or PTFs based on gravelly soil 

types would probably improve soil moisture prediction. The quality of soil 

temperature estimates was not as dependent on the soil textural group. In fact, the 

performance of the model was better for temperature than moisture at all soil types. 

The quality of soil moisture estimates also generally decreased with increasing 

depth. Weeds germinate at shallow depths; thus, the model was not designed to 

estimate conditions at greater depths. 
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globe. SMC is a key variable in balancing the 

ecosystem although it is found in a small volume 

that too is bound within the fractures present in the 

soil. Soil moisture and temperature classification is a 

foundation for many modern international soil 

classification systems. It is recognized at virtually 

all levels of Soil Taxonomy (Soil Survey Staff, 

1999).  

 

Soil moisture and soil temperature properties 

influence soil-plant relationships and serve as a 

determinant of the chemical, mechanical, and 

biological processes that occur in the soil. 

(Christopher C. Cochran,  2010). Factors influencing 

soil moisture and temperature at any given point on 

the landscape are: percent slope, aspect, albedo, 

vegetative cover (type and amount), relative 

humidity, runoff, soil depth, soil texture, soil 

mineralogy, soil bulk density, elevation, latitude, 

percent possible sunshine, day length, wind speed, 

temperature, and precipitation. These 

interrelationships are commonly not considered 

when assessing soil temperature and moisture. Since 

current soil climate models are regional in nature, 

this has often resulted in erroneous soil moisture and 

temperature classifications, especially in areas of the 

country with high relief (Newhall and Berdanier, 

1996). 

 

Modern methods like remote sensing provide an 

opportunity to measure soil moisture directly for an 

extensive range of vegetation, results were found to 

have errors within permissible ranges. Wide ranges 

of sensors are found to be working in different 

regions for the determination of soil moisture. One 

of the prime advantages of this technique is that it 

can provide better resolution of spatial and temporal 

measurements and precise insight into the soil 

moisture present at a particular depth of soil profile. 

 

In this era of evolving technology, several models 

have been introduced for agriculture research 

purposes. This saves the cost of extensive 

involvement of laborers as well as valuable time. 

Availability of STM Model 1D provides the user 

real-time soil moisture data with the availability of 

certain parameters as input, soil moisture can be 

simulated at different depths and can be used for 

various analyses. In brief, the objectives can be 

summarized as: 

 

Assessment of insitu meteorological and observed 

soil moisture dataset with seasonal variations. 

 

Materials and Methods 

 

The whole methodology of research is divided into 5 

different phases as follows:  

 

Experimental site preparation  

 

Soil analysis  

 

Collection of ground station data  

 

Crop data collection  

 

Numerical simulation and Model Performance 

 

The percentage of different constituents was 

calculated as follows- 

 

%Clay = (hydrometer reading * 100)/wt of sample 

 

%Silt = (corrected hydrometer reading at 40 

sec*100)/(wt of sample) - %clay 

 

%sand = 100% - %silt - %clay 

 

Model Description  

 

The STM2 was developed by Spokas and Forcella 

(2009) to predict topsoil microclimate to prevent 

weed propagation (weed seed germination) in the 

context of sustainable soil and crop management. 

The model is available free from the USDAARS. 

 

To generate soil moisture and temperature estimates, 

STM2 requests primary soil properties (sand, clay, 

and organic matter percentages) and daily 

meteorological data (total rain and minimum and 

maximum air temperature) as inputs (Spokas and 
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Forcella, 2009). It is worth noting that STM2 is not 

a multilayer model: soil moisture and temperature 

estimates are generated for different soil depths 

using data from only one soil layer (e.g., topsoil or 

weighted means). 

 

The STM2 is a one-dimensional model that 

considers only vertical water and thermal balances. 

The model also requires that the user define the 

initial water potential and, as lower boundary 

conditions (at the bottom of the soil profile), water 

potential and temperature.  

 

The STM2 uses pedotransfer functions (PTFs) to 

generate secondary soil properties from soil texture 

and organic matter %. Water and thermal balances 

take into account evaporation and precipitation 

fluxes, solar heating, surface ponding, runoff, and 

infiltration. The STM2 outputs for a given depth are 

volumetric water content (soil moisture) or soil 

water potential and soil temperature. Model 

estimates can be produced at several different time 

intervals (weekly, daily, twice per day, four times 

per day, or hourly). Daily estimates were used in our 

study. 

 

Relative root mean square error  

 

This statistical indicator is used to predict the 

accuracy of the model simulation. The RMSER 

value of zero is considered a perfect match between 

the observed and modeled datasets. However, it is 

practically impossible in most cases. The increased 

value of this indicator reflects the greater deviation 

of predicted values from the observed datasets. It is 

obtained by dividing the RMSE values by the mean 

of the observed datasets. 

 

 
 

Model Parameterization 

 

A number of parameters must be set before running 

STM2. Because the model was developed for 

estimation of the soil surface microclimate, it does 

not consider changes in soil texture with profile 

depth. In fact, as mentioned above, it does not utilize 

multiple layer or horizon inputs. For this reason, we 

used a weighted average of primary soil properties 

from the surface to the depth of estimation. The soil 

profiles used in our study contained a series of 

similar (homogenous) horizons. When soil profiles 

vary in terms of soil texture layers, the impact of 

using a weighted average on the secondary soil 

properties estimated by the pedotransfer functions 

must be investigated. We selected warm, temperate, 

rainy (humid) as the climate type for our region and 

set the average wind speed to light breeze. In the 

model variables section, the depth of the soil profile 

was set to 1 m and the mean annual air temperature 

was used as the lower temperature boundary 

condition, as suggested. A value of −500 kPa was 

used for the soil moisture lower boundary condition. 

Lower boundary condition values are specific to 

each soil profile, and the best way to determine them 

is to use moisture measurement averages or to 

calculate them using iterative numeric methods to 

find the optimal value to minimize estimation error. 

Schutte et al., (2008) chose the latter approach. At 

the time of this study, the source code for this 

procedure was not available. To determine the initial 

soil moisture potential value, Mumen (2006), who 

tested a similar model (TEC), suggests starting the 

model 24 h after an important rain event and 

applying a value of −10 kPa. The main reason for 

this choice is that it is not necessarily true that soil is 

saturated after a rain event: soil water content tends 

to reflect the field capacity. The solar heating, 

evaporation, and evaporation scaled by humidity 

options were enabled (default), and the runoff option 

was set to the default value of 50%. 
 

Results and Discussion 
 

Soil properties 

 

Physical properties of soil 
 

For simulating the soil hydraulic properties, certain 

physical parameters of soil were required to be 

calculated, either through laboratory experiments or 

by direct field measurements. These soil properties 
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were used as input in STM2. All these properties of 

the soil were found to be constant in all the 

simulations, as the same experimental plot was 

selected in all the seasons for planting and growing 

the crops. Soil properties obtained are shown in 

Table 3.1. 

 

Hydraulic properties of soil 

 

With the help of soil physical parameters, hydraulic 

properties of soil were simulated. This was done, by 

putting all the obtained values in Neural Network 

Prediction window available in STM2. This Neural 

Network Prediction (Hilten, Lawrence et al., 2008) 

simulates the values of hydraulic properties of a 

given soil profile with the help of Rosetta Lite. The 

used version for this research is 1.1 (Schaap, 2001). 

In case of unavailability of direct field measurement 

instruments or laboratory methods for obtaining the 

required soil physical properties, a series of soil 

catalogs are available in the rosetta. Different 

textural classes are also displayed for simulating the 

hydraulic properties.  

 

The van Genuchten functions have been consulted to 

simulate the required parameters (Van Genuchten, 

1980) along with Mualem pore distribution 

(Mualem, 1976). The various hydraulic parameters 

which were simulated by rosetta are, residual water 

content of soil (θr), saturated moisture content of 

soil (θs), parameters in water retention function of 

soil (α) as well saturated hydraulic conductivity for 

soil profile (Ks). As per the required simulations 

performed in rosetta, various parameters of 

hydraulic properties obtained at different depths are 

presented in Table 3.2. 

 

Simulation of soil moisture for different crop 

seasons 

 

Four crop growth seasons were selected for soil 

moisture simulation comprising of alternative Kharif 

and rabi seasons in the span of two years (2018-

2020). Based upon the crop planted in each season 

at the field, irrigation and crop growth data were 

gathered accordingly. Graphical Plots of 

meteorological parameters were obtained for each 

season to have a comparative insight of the values 

obtained from ground station and satellite. 

 

For each season, two simulations were executed, 

first using meteorological parameters (simulation 1) 

obtained using ground station data and second 

obtained using satellite data (simulation 2). 

Therefore, eight simulations were accomplished out 

in total. Hydra probe data of soil moisture was 

recorded at different depths of its installation and 

was used as standard observed data. 

 

A comparison-based study was done by plotting the 

weather parameter graphs to study and understand 

the difference in recording meteorological datasets 

by ground station and satellite and to analyze the 

effect of these differences on soil water simulation 

by using STM2. 

 

Comparative graphs were plotted for individual 

seasons to study the pattern of soil moisture 

distribution at three different depths and its variation 

due to weather, crop growth, and irrigation datasets. 

The comparison also included irrigation to 

understand the sensitivity of the model. 

 

Each selected crop had a different duration of 

growth and root uptake mechanism. Analysis of 

each season was done separately to understand the 

nature and variation of modeled soil moisture in 

contrast with observed datasets. 

 

Simulation for Rabi season 

 

The very first season chosen for soil moisture 

simulation was of Rabi (01/10/2018 to 31/12/2018) 

during which wheat was planted at the experimental 

plot. The duration of the crops selected for 

simulation was of 90 days. Crop data were recorded 

at each significant growth day such as vegetative, 

reproductive, and ripening. Water was added to the 

field at each crop growth stage and suitable 

irrigation interval. Although irrigation was not 

provided at each day, during which only 

precipitation was considered as an input for water 
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added to the field. Root depth penetration and plant 

height were noted at each growth stage. For the 

simulation of water flow, this model considered 

precipitation, evaporation, transpiration from crop 

and root water uptake into account. 

 

Simulation 1 was established using ground station 

data and simulation 2 was performed using satellite 

data. Graphical as well as the statistical analysis was 

done to draw the important conclusions for 

modeling the SMC. 

 

Figure 3.2 suggests that simulated water content is 

mostly over estimated in crucial crop growth stages. 

In both cases of simulation (ground station and 

satellite), modeled soil moisture was found greater 

in value. During the last few days of the crop, the 

model was found to be under estimating the SMC. A 

similar pattern of over estimation was observed at 

the depth of 5 cm and 20 cm of the soil profile. 

 

However, an agreeable match was found at each 

depth between the ground station and satellite 

simulation. It could be due to less deviation of 

meteorological parameters obtained from ground 

station data from satellite data. With the increasing 

number of crop growth days, a great deviation was 

seen in the observed and modeled soil moisture at all 

the three different depths of soil moisture.  

 

Higher values of this deviation were seen at the 

depth of 50cm.One of the conceivable reasons for 

the acquired deviation could be improper recording 

and unavailability of accurate field irrigation data.  

 

Also, water added to the field at individual crop 

growth stages was random. However, great 

coordination between the ground station and satellite 

simulation was observed at the depth of 5 cm and 20 

cm. 

 

Another reason might be the spatial variation in soil 

properties within the field of experiment. Sand, silt, 

and clay composition were not uniform at a deeper 

depth (Qiao, 2014) and soil properties were varying 

to a great degree. 

 

Simulation for Kharif Season 

 

The next season chosen for soil moisture simulation 

was Kharif (June 2019- October 2019). The field 

was mostly planted with rice. Other crops like soy 

bean, arhar, moong bean, etc were sown at the 

adjacent plots. 

 

All these crops had different water requirements and 

root penetration depth. Irrigation along with the 

rainfall was obtained to gather accurate data for 

providing total water added to the field. 

 

Variation of meteorological parameters 

 

Comparison of simulated and observed soil 

moisture 

 

Figure3.4 shows that model is under estimating the 

water flow during the initial growth phase of the 

crop at the depth of 5 cm and 50 cm. However, 

higher values of over estimation were found at the 

depth of 50 cm during the initial days of the growth 

period of the rice. In the middle of the growth 

stages, mostly at the reproductive stage, observed 

moisture is well synchronized to the simulated 

moisture at all three depths. Graphical analysis at all 

the depths depicts that simulation 2 is over 

estimating at the depth of 50 cm. The valid reason 

could be the higher values of meteorological 

parameters such as wind speed and relative humidity 

obtained from the satellite (Jiang, Pang et al., 2010). 

 

Almost after 90-100 days of crop sowing, the 

simulation was under estimated. The justifiable 

reason could be the lower values of water 

broadcasted to the field. During the ripening phase 

of the rice, irrigation was reduced as water received 

through rainfall fulfilled the water necessity of the 

crop planted at the field.  
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Fig.1 Diagrammatic representation of the experimental design 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table.1 Overview of traditional methods of soil moisture measurement 

 

Methods  Advantages  Limitations  Time taken  

Gravimetric  High accuracy  Time insensitive  About 24 hour  

Neutron Scattering  Suitable for several 

depths  

Radiation is hazardous  About 1-2 minutes  

TDR  Easy to use  Sensitive to saline soils  Instantaneous  

Gamma attenuation  Non-destructive  Restricted up to a depth 

of 2.5cm  

Instantaneous  

Tensiometer techniques  Durable and easy to 

operate  

Estimation is fragile  About 2-3 hour  

 

Table.2 Remote sensing techniques for soil moisture measurement 

 

Methods  Advantages  Limitations  

Optical Remote Sensing  High resolution (spatial)  Crop cover sensitive  

Thermal Remote Sensing  Large area is covered  Poor resolution(temporal)  

Active Microwave RS  Cost-effective  Sensitive to roughness  

Passive Microwave RS  Provides global scale soil map  Coarse resolution(spatial)  
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Table.3 Parameters of soil physical properties 

 

Depth (cm) Sand (%) Silt (%) Clay (%) Bulk Density  

(g/ cm
3
) 

0-5 41.88 19.86 38.25 1.35 

5-20 39.38 17.59 43.02 1.40 

20-45 38.44 16.55 45.01 1.48 

45-50 38.79 17.15 44.05 1.53 

 

Fig.2 Meteorological parameters, obtained from meteorological station and satellite 
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Table.4 Soil hydraulic parameters 

 

Depth (cm) 𝜽r (cm3 cm−3) 𝜽s (cm3 cm−3) 𝜶 

(cm−1) 

n Ks (cm d-1) 

0-5 0.0887 0.4652 0.0181 1.3456 19.13 

5-20 0.0912 0.4575 0.0194 1.3031 15.78 

20-45 0.0894 0.4364 0.0203 1.2641 11.16 

45-50 0.0863 0.4207 0.0205 1.2506 8.74 

 

Fig.3 Temporal variation of simulated and observed soil moisture content at the depth of (a) 5cm, (b) 20cm, 

(c) 50cm 
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Fig.4 Meteorological parameters, obtained from meteorological station and satellite 

 

 

Fig.5 Temporal variation of simulated and observed soil moisture content at the depth of (a) 5cm, (b) 20cm, 

(c) 50cm 
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Fig.6 Meteorological parameters, obtained from meteorological station and satellite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 Temporal variation of simulated and observed soil moisture content at the depth of (a) 5cm, (b) 20cm, 

(c) 50cm 
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Fig.8 Meteorological parameters, obtained from meteorological station and satellite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9 Temporal variation of simulated and observed soil moisture content at the depth of (a) 5cm, (b) 20cm, 

(c) 50cm 
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Higher values of deviation were observed after the 

90 days of the crop growth at the depth of 5 cm and 

50 cm. In the Kharif season, the model simulation 

was found to be satisfactory, as precise irrigation 

and crop growth data were obtained as well as 

provided as an input to the model. 

 

Simulation for Rabi season 

 

The very next season that falls off is of Rabi 

(25/10/19 - 17/03/2020). During this season the 

experimental plot was sown by the crop of maize. 

 

Variation of meteorological parameters 

 

Comparison of simulated and observed soil 

moisture 

 

Figure 3.6 depicts that the model is under estimating 

the water flow dynamics at all the depths during the 

initial days of sowing. The underestimation was 

found to be larger in extent at the depth of 20 cm 

and 50 cm. Approximately after 30 days of sowing 

the maize, a great reduction in simulated moisture 

content was observed at the depth of 5 cm. 

However, both the modeled simulations were well 

synchronized.  

 

After 100 days of crop planting, the pattern of 

stimulation varied greatly at all three depths. 

Observed soil moisture was seen to be lower in 

value in comparison to both the simulations. With 

the duration of the crop increasing in days and 

moving towards harvesting, the model simulation 

was not found to be satisfactory at all three depths. 

The possible reason could be the different root 

uptake mechanisms of the crop at various crop 

growth stages. (Chen, Willgoose et al., 2014). 

 

Irrigation data was found to be the most sensitive 

parameter for STM2. It greatly varies and 

randomizes the simulations according to the 

irrigation datasets. This simulation for longer 

duration crop seemed to be greatly affected by the 

root uptake mechanism of the adjacent crops which 

were planted simultaneously during the season. 

Another flaw of the model could be that it simulates 

water dynamics on daily basis and distributes the 

rainfall over a single day hand hence, suppress the 

surface runoff over the infiltration. More accurate 

results can be expected if it provides provision of 

hourly SMC simulation. And it can partition 

between the infiltration and runoff occurring during 

the whole simulation period. (Qiao, 2014). 

 

Comparison of simulated and observed soil 

moisture 

 

During the vegetative growth of the crop, the model 

was found to be over estimating the water flow at all 

the depths. This could be due to higher values of the 

total water or solely irrigation provided to the 

experimental plot. The values of the soil moisture 

obtained through simulation 1 were seen higher than 

the observed moisture content at the depth of 5 cm. 

However, moisture content values obtained by 

simulation 2 were seen to be higher at the depth of 

20 cm and 50 cm. After 32-35 days of sowing, 

simulation 1 and 2 showed well coordination to 

observed soil moisture at the depth of 5 cm and 20 

cm. As entering the reproductive phase of the crop 

growth, simulations 1 and 2 were analyzed to be 

under estimating at the depth of 5 cm and 50 cm. 

However, both the simulations were varying from 

each other at the depth of 20cm. After 90 days of 

sowing, a great deviation was observed in recorded 

and modeled simulation in all three depths. High 

under estimation values were noted during the 

simulations. The reduction in moisture content can 

be seen as the irrigation was reduced at this stage of 

crop growth. This could be expected as a greater 

difference was observed in the meteorological 

parameters recorded by satellite and ground stations. 

The other reason which could be understood from 

this simulation is that this version does not give 

information about the macropores flows which 

results in higher values of net saturated hydraulic 

conductivity at each soil profile chosen for the 

simulation purpose. Also, it does not account for the 

modification in soil distribution at different depths 

and only considers physical properties for 

simulation. 



Int.J.Curr.Microbiol.App.Sci (2023) 12(07): 119-132 

131 

 

Summary  

 

The main purpose of this study was to model the soil 

moisture dynamics at three different depths of a 50 

cm soil profile to understand the varying pattern of 

vertical movement of water within the soil horizon. 

STM2 model was used for this experiment. The 

observed data was gathered from the experimental 

plot where the soil sensor has been installed.  

 

Hydra probe sensor was installed at the depths of 5 

cm, 20 cm, and 50 cm for recording the real-time 

soil moisture data sets. STM2 requires a vast range 

of input parameters for simulating the water 

dynamics at the various depths of a particular soil 

profile.  

 

Two years of the crop growth period (2018-2020) 

was selected for the simulation. This span of 2 years 

was divided into 4 seasons of crop growth including 

alternative Rabi and Kharif seasons. Root uptake 

simulation needs information about certain crop 

growth data such as LAI, root depth, and plant 

height. These data were obtained at the significant 

days of each crop growth. 

 

Soil physical parameters were obtained from direct 

field measurements in integration with the 

laboratory methods. Bulk density and percentage of 

sand silt and clay was obtained by laboratory 

methods for the determination of soil textural class. 

All these variables were used to simulate the 

hydraulic parameters of the soil by putting the value 

in the inbuilt rosetta. A series of options are present 

to select the soil textural classes according to the 

measured parameters.  

 

Crop parameters were also used to simulate the root 

uptake mechanism. Meteorological parameters were 

obtained from the two sources. One was generated 

from a gauging station while the other was 

downloaded from satellite by providing the 

geographical coordinates of the place. Two 

simulations were carried out for each season. 

Simulation 1 and corresponding the use of the 

ground station and satellite data simultaneously. 

Graphical and statistical analysis depicted that 

model is efficient for simulating the upper layer 

moisture content and poor values were generated at 

deeper depths of the soil profile. 

 

The STM2 is a simple and potentially useful tool for 

modeling soil moisture and temperature conditions 

to plan agricultural management operation. The 

quality of STM2 soil moisture estimates varies with 

soil textural groups. The model worked best with the 

Sandy and Loamy soil textural groups, which had 

the lowest RMSE values and the highest d indices. 

Its moisture estimates were only moderately good 

for the Clayey soil, and they were unacceptable for 

the Gravelly soil. Addition of data on the percentage 

of coarse fragments in the soil or PTFs based on 

gravelly soil types would probably improve soil 

moisture prediction. The quality of soil temperature 

estimates was not as dependent on the soil textural 

group. In fact, the performance of the model was 

better for temperature than moisture at all soil types. 

The quality of soil moisture estimates also generally 

decreased with increasing depth. Weeds germinate 

at shallow depths; thus, the model was not designed 

to estimate conditions at greater depths. 

 

Crop phenology had an impact on the performance 

of STM2 soil moisture estimates. Thus, the best soil 

moisture estimates were generated during the 

seeding to emergence and flowering to senescence 

periods, characterized by relatively low ET activity, 

which is not considered by STM2. This suggests 

that STM2 could be highly useful only at the 

beginning of a growing season, when efforts to 

control weed germination are underway.  

 

A model that accounted for plant development might 

be more appropriate during the period of higher 

water demand for ET. Temperature estimates were 

accurate at any time during the corn growing season. 

The sensitivity analysis revealed that primary soil 

properties have an impact on soil moisture 

predictions according to soil textural groups. Among 

the secondary soil properties derived from PTFs, 

bulk density and saturated hydraulic conductivity 

had the greatest impact on soil moisture. 



Int.J.Curr.Microbiol.App.Sci (2023) 12(07): 119-132 

132 

 

References 

 

Aftab Hussain Azahar, B J C Perera and Ghulam 

Nabi (2009) Mehran University Research 

Journal of Engineering & Technology, 

Volume 30, NO. 2, April, 2011 [ISSN 0254-

7821]. 

Min Chen, Garry R. Willgoose, Patricia M. Saco. 

2014. Spatial prediction of temporal soil 

moisture dynamics using HYDRUS-1D. 

Hydrological Processes. 28 (2): 171-185 

Christopher C. Cochran. 2010. Soil Moisture-

Temperature Correlation and Classification 

Model. 19th World Congress of Soil 

Science, Soil Solutions for a Changing 

World 1 – 6 August 2010, Brisbane, 

Australia.  

Qiao C, Liu L, Hu S, Compton JE, Greaver TL, Li 

Q. How inhibiting nitrification affects 

nitrogen cycle and reduces environmental 

impacts of anthropogenic nitrogen input. 

Glob Chang Biol. 2015 Mar;21(3):1249-57. 

https://doi.org/10.1111/gcb.12802  

Newhall F and Berdanier CR. 1996. Calculation of 

soil moisture regimes from the climatic 

record. Natural Resources Conservation 

Service, Soil Survey Investigation Report, 

No. 46, Pp13.  

Mualem, Y. 1976. A new model for predicting the 

hydraulic conductivity of unsaturated porous 

media. Water Resour. Res. 12:513–522. 

Mumen, M. (2006), Caracte´risation du 

fonctionnement hydrique des sols a` l’aide 

d’un mode`le me´caniste de transferts d’eau 

et de chaleur mis en oeuvre en fonction des 

informations disponibles sur le sol, Ph.D. 

thesis, 169 pp., Univ. d’Avignon et des pays 

de Vaucluse, Avignon, France. 

Rakesh K Mishra (2021), Farmers’ Perception 

regarding soil health card in Varanasi 

District of Uttar Pradesh, India. International 

journal of current microbiology applied 

sciences volume10(2):1476-1492. 

https://doi.org/10.20546/ijcmas.2021.1002.1

77  

Schaap, M.G., F.J. Leij, and M.Th. van Genuchten. 

2001. Rosetta: A computer program for 

estimating soil hydraulic parameters with 

hierarchical pedotransfer functions. J. 

Hydrol. 251:163–176  

Soil Survey Staff (1990) International Committee on 

Soil Moisture and Temperature Regimes. 

Circular Letter no. 1. (USDA-National Soil 

Survey Center: Soil Conservation Service: 

Lincoln, NE). 

Spokas, K. and Forcella, F. (2009) Software Tools 

for Weed Seed Germination Modeling. 

Weed Science, 57, 216-227. 

http://dx.doi.org/10.1614/WS-08-142.1 

Van Genuchten, 1980. A Closed-form Equation for 

Predicting the Hydraulic Conductivity of 

Unsaturated Soils. Soil Science Society of 

America Journal Soil Science Society of 

America Journal. 44, 5: 892-898. 

https://doi.org/10.2136/sssaj1980.036159950

04400050002x  

  

  

How to cite this article:  

 

Bhavna Singh, A. K. Nema and Prashant K. Srivastava. 2023. Estimation of Soil Temperature and 

Moisture Using STM Model in Varanasi District of Uttar Pradesh, India. Int.J.Curr.Microbiol.App.Sci. 

12(07): 119-132. doi: https://doi.org/10.20546/ijcmas.2023.1207.014  
 

 

https://doi.org/10.1111/gcb.12802
https://doi.org/10.20546/ijcmas.2021.1002.177
https://doi.org/10.20546/ijcmas.2021.1002.177
http://dx.doi.org/10.1614/WS-08-142.1
https://doi.org/10.2136/sssaj1980.03615995004400050002x
https://doi.org/10.2136/sssaj1980.03615995004400050002x
https://doi.org/10.20546/ijcmas.2023.1207.014

